7. Kaleidoscope:擴展語言:可變變數¶
7.1. 第 7 章 簡介¶
歡迎來到「使用 LLVM 實作語言」教學的第 7 章。在第 1 章到第 6 章中,我們建立了一個非常出色但簡單的 函數式程式語言。在我們的旅程中,我們學習了一些解析技術、如何建構和表示 AST、如何建構 LLVM IR,以及如何最佳化生成的程式碼以及 JIT 編譯它。
雖然 Kaleidoscope 作為一種函數式程式語言很有趣,但它作為函數式的事實使得為它生成 LLVM IR「太容易」了。特別是,函數式程式語言使得直接以 SSA 形式 建構 LLVM IR 變得非常容易。由於 LLVM 要求輸入程式碼採用 SSA 形式,因此這是一個非常好的特性,對於新手來說,如何為具有可變變數的指令式語言生成程式碼通常不清楚。
本章的簡短(且令人高興的)總結是,您的前端不需要建構 SSA 形式:LLVM 提供了針對此目的的高度調整和充分測試的支援,儘管它的工作方式對於某些人來說有點出乎意料。
7.2. 為什麼這是個難題?¶
要了解為什麼可變變數會在 SSA 建構中造成複雜性,請考慮這個極其簡單的 C 語言範例
int G, H;
int test(_Bool Condition) {
int X;
if (Condition)
X = G;
else
X = H;
return X;
}
在這種情況下,我們有變數「X」,其值取決於程式中執行的路徑。由於在 return 指令之前,X 有兩個不同的可能值,因此會插入一個 PHI 節點來合併這兩個值。我們希望這個範例的 LLVM IR 看起來像這樣
@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*
define i32 @test(i1 %Condition) {
entry:
br i1 %Condition, label %cond_true, label %cond_false
cond_true:
%X.0 = load i32, i32* @G
br label %cond_next
cond_false:
%X.1 = load i32, i32* @H
br label %cond_next
cond_next:
%X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
ret i32 %X.2
}
在此範例中,從全域變數 G 和 H 載入的值在 LLVM IR 中是明確的,並且它們存在於 if 陳述式的 then/else 分支(cond_true/cond_false)中。為了合併輸入值,cond_next 區塊中的 X.2 phi 節點會根據控制流程的來源選擇要使用的正確值:如果控制流程來自 cond_false 區塊,則 X.2 會取得 X.1 的值。或者,如果控制流程來自 cond_true,則它會取得 X.0 的值。本章的目的不是解釋 SSA 形式的細節。如需更多資訊,請參閱眾多 線上參考資料 之一。
這篇文章探討的問題是:「在將賦值操作降低到可變變數時,誰來放置 phi 節點?」。這裡的問題是 LLVM *要求* 其 IR 必須採用 SSA 形式:它沒有「非 SSA」模式。然而,SSA 構造需要非簡單的演算法和資料結構,因此要求每個前端都必須複製此邏輯是不方便且浪費的。
7.3. LLVM 中的記憶體¶
這裡的「技巧」是,雖然 LLVM 要求所有暫存器值都採用 SSA 形式,但它不要求(或允許)記憶體物件採用 SSA 形式。在上面的範例中,請注意從 G 和 H 載入資料是直接存取 G 和 H:它們沒有被重新命名或版本化。這與其他一些編譯器系統不同,後者確實嘗試對記憶體物件進行版本化。在 LLVM 中,它不是將記憶體的資料流分析編碼到 LLVM IR 中,而是使用 分析遍歷 處理,這些遍歷會根據需要計算。
考慮到這一點,我們的想法是為函數中的每個可變物件創建一個堆疊變數(它位於記憶體中,因為它在堆疊上)。為了利用這個技巧,我們需要討論 LLVM 如何表示堆疊變數。
在 LLVM 中,所有記憶體存取都是通過載入/儲存指令顯式進行的,並且它經過精心設計,沒有(或不需要)「取址」運算符。請注意 @G/@H 全局變數的類型實際上是「i32*」,即使變數被定義為「i32」。這意味著 @G 在全局資料區域中定義了一個 i32 的*空間*,但它的*名稱*實際上指的是該空間的地址。堆疊變數的工作方式相同,只是它們不是使用全局變數定義聲明的,而是使用 LLVM alloca 指令 聲明的
define i32 @example() {
entry:
%X = alloca i32 ; type of %X is i32*.
...
%tmp = load i32, i32* %X ; load the stack value %X from the stack.
%tmp2 = add i32 %tmp, 1 ; increment it
store i32 %tmp2, i32* %X ; store it back
...
這段程式碼顯示了一個如何在 LLVM IR 中聲明和操作堆疊變數的範例。使用 alloca 指令分配的堆疊記憶體是完全通用的:您可以將堆疊槽的地址傳遞給函數,您可以將其儲存在其他變數中,等等。在我們上面的範例中,我們可以重寫該範例以使用 alloca 技術來避免使用 PHI 節點
@G = weak global i32 0 ; type of @G is i32*
@H = weak global i32 0 ; type of @H is i32*
define i32 @test(i1 %Condition) {
entry:
%X = alloca i32 ; type of %X is i32*.
br i1 %Condition, label %cond_true, label %cond_false
cond_true:
%X.0 = load i32, i32* @G
store i32 %X.0, i32* %X ; Update X
br label %cond_next
cond_false:
%X.1 = load i32, i32* @H
store i32 %X.1, i32* %X ; Update X
br label %cond_next
cond_next:
%X.2 = load i32, i32* %X ; Read X
ret i32 %X.2
}
這樣,我們就找到了一種方法來處理任意可變變數,而根本不需要創建 Phi 節點
每個可變變數都變成一個堆疊分配。
每次讀取變數都變成從堆疊載入資料。
每次更新變數都變成儲存到堆疊。
獲取變數的地址直接使用堆疊地址。
雖然這個解決方案解決了我們的當前問題,但它引入了另一個問題:我們現在顯然為非常簡單和常見的操作引入了大量的堆疊流量,這是一個主要的效能問題。對我們來說幸運的是,LLVM 優化器有一個高度調整的優化遍歷,稱為「mem2reg」,它可以處理這種情況,將像這樣的 allocas 提升為 SSA 暫存器,並根據需要插入 Phi 節點。例如,如果您通過遍歷運行此範例,您將獲得
$ llvm-as < example.ll | opt -passes=mem2reg | llvm-dis
@G = weak global i32 0
@H = weak global i32 0
define i32 @test(i1 %Condition) {
entry:
br i1 %Condition, label %cond_true, label %cond_false
cond_true:
%X.0 = load i32, i32* @G
br label %cond_next
cond_false:
%X.1 = load i32, i32* @H
br label %cond_next
cond_next:
%X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
ret i32 %X.01
}
mem2reg 遍歷實現了標準的「迭代支配邊界」演算法來構造 SSA 形式,並具有一些優化功能,可以加快(非常常見的)退化情況的速度。mem2reg 優化遍歷是處理可變變數的答案,我們強烈建議您依賴它。請注意,mem2reg 僅在某些情況下適用於變數
mem2reg 是由 alloca 驅動的:它尋找 allocas,如果它可以處理它們,它就會提升它們。它不適用於全局變數或堆分配。
mem2reg 只會尋找函式進入區塊中的 alloca 指令。位於進入區塊中可以保證 alloca 只會被執行一次,這使得分析更加簡單。
mem2reg 只會提升使用方式為直接載入和儲存的 allocas。如果堆疊物件的地址被傳遞給函式,或者涉及任何奇怪的指標算術,則 alloca 不會被提升。
mem2reg 只適用於第一類值的 allocas(例如指標、純量和向量),並且僅在分配的陣列大小為 1(或 .ll 檔案中遺漏)時才適用。 mem2reg 無法將結構或陣列提升為暫存器。請注意,“sroa” pass 功能更強大,並且在許多情況下可以提升結構、“unions” 和陣列。
所有這些屬性對於大多數指令式語言來說都很容易滿足,我們將在下面使用 Kaleidoscope 來進行說明。您可能會問的最後一個問題是:我是否應該為我的前端費心處理這些瑣事?如果我直接進行 SSA 建構,避免使用 mem2reg 優化 pass,這樣不是更好嗎?簡而言之,我們強烈建議您使用此技術來建構 SSA 形式,除非有非常充分的理由不這樣做。使用此技術是
經過驗證且經過良好測試:clang 使用此技術處理局部可變數。因此,LLVM 最常見的客戶端正在使用它來處理它們的大部分變數。您可以確定錯誤會被快速發現並及早修復。
極速:mem2reg 有許多特殊情況使其在常見情況下以及完全通用的情況下都能快速執行。例如,它為僅在單個區塊中使用的變數、只有一個賦值點的變數、避免插入不必要的 phi 節點的良好啟發式方法等提供了快速路徑。
除錯資訊產生所需:LLVM 中的除錯資訊依賴於公開變數的地址,以便可以將除錯資訊附加到該變數。此技術與這種除錯資訊風格非常自然地吻合。
如果沒有別的,這會讓您的前端更容易啟動和運行,並且實作起來非常簡單。讓我們現在使用可變變數來擴展 Kaleidoscope!
7.4. Kaleidoscope 中的可變變數¶
既然我們知道了想要解決的問題類型,讓我們看看在我們的小型 Kaleidoscope 語言的上下文中這看起來是什麼樣子。我們將新增兩個功能
使用 ‘=’ 運算子改變變數的能力。
定義新變數的能力。
雖然第一項才是重點,但我們只有用於輸入參數和歸納變數的變數,重新定義這些變數的範圍有限 :)。此外,無論您是否要改變它們,定義新變數的能力都是一件有用的事情。以下是一個激勵性的例子,展示了我們如何使用這些
# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;
# Recursive fib, we could do this before.
def fib(x)
if (x < 3) then
1
else
fib(x-1)+fib(x-2);
# Iterative fib.
def fibi(x)
var a = 1, b = 1, c in
(for i = 3, i < x in
c = a + b :
a = b :
b = c) :
b;
# Call it.
fibi(10);
為了改變變數,我們必須更改現有變數以使用“alloca 技巧”。完成後,我們將新增新的運算子,然後擴展 Kaleidoscope 以支援新的變數定義。
7.5. 調整現有變數以進行改變¶
Kaleidoscope 中的符號表在程式碼生成期間由「NamedValues
」映射管理。此映射目前會追蹤包含已命名變數之雙精度浮點數值的 LLVM「Value*」。為了支援變數異動,我們需要稍微變更一下,以便讓 NamedValues
保存相關變數的*記憶體位置*。請注意,此變更屬於重構:它會變更程式碼的結構,但本身不會變更編譯器的行為。所有這些變更都與 Kaleidoscope 程式碼產生器隔離。
在 Kaleidoscope 開發的這個階段,它只支援兩種情況下的變數:函式的輸入參數和「for」迴圈的歸納變數。為了保持一致性,除了其他使用者定義的變數之外,我們還將允許對這些變數進行變數異動。這表示這些變數都需要記憶體位置。
為了開始對 Kaleidoscope 進行轉換,我們將變更 NamedValues
映射,使其映射到 AllocaInst* 而不是 Value*。完成此操作後,C++ 編譯器會告訴我們需要更新程式碼的哪些部分
static std::map<std::string, AllocaInst*> NamedValues;
此外,由於我們需要建立這些配置,因此我們將使用一個輔助函式,確保在函式的進入區塊中建立配置
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
const std::string &VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr,
VarName);
}
這段看起來很有趣的程式碼建立了一個 IRBuilder 物件,該物件指向進入區塊的第一個指令 (.begin())。然後,它會建立一個具有預期名稱的配置並返回該配置。由於 Kaleidoscope 中的所有值都是雙精度浮點數,因此無需傳入要使用的類型。
完成此操作後,我們要進行的第一個功能變更屬於變數參考。在我們的新方案中,變數存在於堆疊中,因此產生對它們的參考的程式碼實際上需要產生從堆疊位置載入的程式碼
Value *VariableExprAST::codegen() {
// Look this variable up in the function.
AllocaInst *A = NamedValues[Name];
if (!A)
return LogErrorV("Unknown variable name");
// Load the value.
return Builder->CreateLoad(A->getAllocatedType(), A, Name.c_str());
}
如您所見,這非常簡單。現在,我們需要更新定義變數的內容以設定配置。我們將從 ForExprAST::codegen()
開始(如需完整程式碼清單,請參閱完整程式碼清單)
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;
// Store the value into the alloca.
Builder->CreateStore(StartVal, Alloca);
...
// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder->CreateLoad(Alloca->getAllocatedType(), Alloca,
VarName.c_str());
Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
Builder->CreateStore(NextVar, Alloca);
...
這段程式碼與我們允許可變變數之前的程式碼幾乎相同。最大的區別是我們不再需要建構 PHI 節點,並且我們使用載入/儲存來根據需要存取變數。
為了支援可變參數變數,我們還需要為它們進行配置。這段程式碼也很簡單
Function *FunctionAST::codegen() {
...
Builder->SetInsertPoint(BB);
// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args()) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
// Store the initial value into the alloca.
Builder->CreateStore(&Arg, Alloca);
// Add arguments to variable symbol table.
NamedValues[std::string(Arg.getName())] = Alloca;
}
if (Value *RetVal = Body->codegen()) {
...
對於每個參數,我們都會進行配置,將函式的輸入值儲存到配置中,並將配置註冊為參數的記憶體位置。這個方法在 FunctionAST::codegen()
為函式設定好進入區塊之後就會被呼叫。
最後缺少的部分是新增 mem2reg 傳遞,這讓我們可以再次獲得良好的程式碼生成
// Promote allocas to registers.
TheFPM->add(createPromoteMemoryToRegisterPass());
// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->add(createInstructionCombiningPass());
// Reassociate expressions.
TheFPM->add(createReassociatePass());
...
看看 mem2reg 優化執行前後的程式碼是什麼樣子會很有趣。例如,這是我們遞迴 fib 函式的程式碼前後對比。優化前
define double @fib(double %x) {
entry:
%x1 = alloca double
store double %x, double* %x1
%x2 = load double, double* %x1
%cmptmp = fcmp ult double %x2, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp one double %booltmp, 0.000000e+00
br i1 %ifcond, label %then, label %else
then: ; preds = %entry
br label %ifcont
else: ; preds = %entry
%x3 = load double, double* %x1
%subtmp = fsub double %x3, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%x4 = load double, double* %x1
%subtmp5 = fsub double %x4, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
br label %ifcont
ifcont: ; preds = %else, %then
%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
ret double %iftmp
}
這裡只有一個變數(x,輸入參數),但您仍然可以看到我們正在使用的極其簡單的程式碼生成策略。在進入區塊中,會建立一個配置,並將初始輸入值儲存到其中。每次對變數的參考都會從堆疊重新載入。另外,請注意,我們沒有修改 if/then/else 運算式,因此它仍然會插入一個 PHI 節點。雖然我們可以為它進行配置,但實際上為它建立一個 PHI 節點更容易,所以我們仍然只建立 PHI。
這是 mem2reg 傳遞執行後的程式碼
define double @fib(double %x) {
entry:
%cmptmp = fcmp ult double %x, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp one double %booltmp, 0.000000e+00
br i1 %ifcond, label %then, label %else
then:
br label %ifcont
else:
%subtmp = fsub double %x, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%subtmp5 = fsub double %x, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
br label %ifcont
ifcont: ; preds = %else, %then
%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
ret double %iftmp
}
對於 mem2reg 來說,這是一個簡單的例子,因為變數沒有被重新定義。 顯示這一點的目的是為了讓你對插入這種明目張膽的低效率感到安心:)。
在其他優化器執行後,我們得到
define double @fib(double %x) {
entry:
%cmptmp = fcmp ult double %x, 3.000000e+00
%booltmp = uitofp i1 %cmptmp to double
%ifcond = fcmp ueq double %booltmp, 0.000000e+00
br i1 %ifcond, label %else, label %ifcont
else:
%subtmp = fsub double %x, 1.000000e+00
%calltmp = call double @fib(double %subtmp)
%subtmp5 = fsub double %x, 2.000000e+00
%calltmp6 = call double @fib(double %subtmp5)
%addtmp = fadd double %calltmp, %calltmp6
ret double %addtmp
ifcont:
ret double 1.000000e+00
}
在這裡,我們看到 simplifycfg pass 決定將 return 指令複製到 ‘else’ 區塊的末尾。 這讓它可以消除一些分支和 PHI 節點。
現在所有符號表引用都更新為使用堆疊變數,我們將添加賦值運算符。
7.6. 新的賦值運算符¶
在我們目前的框架中,添加一個新的賦值運算符非常簡單。 我們將像解析任何其他二元運算符一樣解析它,但在內部處理它(而不是允許用戶定義它)。 第一步是設定優先順序
int main() {
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
現在解析器知道了二元運算符的優先順序,它會處理所有的解析和 AST 生成。 我們只需要為賦值運算符實現程式碼生成即可。 這看起來像
Value *BinaryExprAST::codegen() {
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS.get());
if (!LHSE)
return LogErrorV("destination of '=' must be a variable");
與其他二元運算符不同,我們的賦值運算符不遵循“發出 LHS、發出 RHS、執行計算”模型。 因此,它在處理其他二元運算符之前作為一個特例處理。 另一個奇怪之處是它要求 LHS 是一個變數。 擁有「(x+1) = expr」是無效的 - 只允許像「x = expr」這樣的東西。
// Codegen the RHS.
Value *Val = RHS->codegen();
if (!Val)
return nullptr;
// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
if (!Variable)
return LogErrorV("Unknown variable name");
Builder->CreateStore(Val, Variable);
return Val;
}
...
一旦我們有了變數,賦值的程式碼生成就很簡單了:我們發出賦值的 RHS,創建一個存儲,並返回計算值。 返回一個值允許鏈式賦值,例如「X = (Y = Z)」。
現在我們有了一個賦值運算符,我們可以改變迴圈變數和參數。 例如,我們現在可以執行這樣的程式碼
# Function to print a double.
extern printd(x);
# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;
def test(x)
printd(x) :
x = 4 :
printd(x);
test(123);
執行時,此範例會先輸出「123」,然後輸出「4」,表明我們確實改變了值! 好了,我們現在已經正式實現了我們的目標:要使其正常工作,在一般情況下需要 SSA 構造。 但是,為了真正有用,我們希望能夠定義我們自己的局部變數,接下來讓我們添加這個!
7.7. 用戶定義的局部變數¶
添加 var/in 就像我們對 Kaleidoscope 所做的任何其他擴展一樣:我們擴展了詞法分析器、解析器、AST 和程式碼生成器。 添加新的「var/in」構造的第一步是擴展詞法分析器。 和以前一樣,這非常簡單,程式碼看起來像這樣
enum Token {
...
// var definition
tok_var = -13
...
}
...
static int gettok() {
...
if (IdentifierStr == "in")
return tok_in;
if (IdentifierStr == "binary")
return tok_binary;
if (IdentifierStr == "unary")
return tok_unary;
if (IdentifierStr == "var")
return tok_var;
return tok_identifier;
...
下一步是定義我們要構造的 AST 節點。 對於 var/in,它看起來像這樣
/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
std::unique_ptr<ExprAST> Body;
public:
VarExprAST(std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
std::unique_ptr<ExprAST> Body)
: VarNames(std::move(VarNames)), Body(std::move(Body)) {}
Value *codegen() override;
};
var/in 允許一次定義一個名稱列表,並且每個名稱都可以選擇性地有一個初始值。 因此,我們在 VarNames 向量中捕獲此信息。 此外,var/in 有一個主體,該主體允許訪問 var/in 定義的變數。
有了這個,我們就可以定義解析器部分。 我們要做的第一件事是將其添加為主要表達式
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
case tok_if:
return ParseIfExpr();
case tok_for:
return ParseForExpr();
case tok_var:
return ParseVarExpr();
}
}
接下來我們定義 ParseVarExpr
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
// At least one variable name is required.
if (CurTok != tok_identifier)
return LogError("expected identifier after var");
此程式碼的第一部分將標識符/表達式對列表解析為局部 VarNames
向量。
while (true) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
// Read the optional initializer.
std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
if (!Init) return nullptr;
}
VarNames.push_back(std::make_pair(Name, std::move(Init)));
// End of var list, exit loop.
if (CurTok != ',') break;
getNextToken(); // eat the ','.
if (CurTok != tok_identifier)
return LogError("expected identifier list after var");
}
解析完所有變數後,我們就會解析主體並創建 AST 節點
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return LogError("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return std::make_unique<VarExprAST>(std::move(VarNames),
std::move(Body));
}
現在我們可以解析和表示程式碼了,我們需要支持為它發出 LLVM IR。 此程式碼以
Value *VarExprAST::codegen() {
std::vector<AllocaInst *> OldBindings;
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
ExprAST *Init = VarNames[i].second.get();
基本上,它會遍歷所有變數,並逐一安裝它們。 對於我們放入符號表中的每個變數,我們都會記住我們在 OldBindings 中替換的先前值。
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {
InitVal = Init->codegen();
if (!InitVal)
return nullptr;
} else { // If not specified, use 0.0.
InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
}
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
Builder->CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(NamedValues[VarName]);
// Remember this binding.
NamedValues[VarName] = Alloca;
}
這裡的註解比程式碼還多。基本概念是我們先發出初始化程式碼、建立 alloca 指令,然後更新符號表使其指向該指令。一旦所有變數都安裝到符號表中,我們就開始評估 var/in 表達式的程式碼區塊。
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)
return nullptr;
最後,在返回之前,我們會恢復先前的變數綁定。
// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
NamedValues[VarNames[i].first] = OldBindings[i];
// Return the body computation.
return BodyVal;
}
所有這些的最終結果是我們獲得了具有正確作用域的變數定義,並且我們甚至(輕而易舉地)允許對它們進行修改:)。
透過這一點,我們完成了我們設定的目標。我們在簡介中提到的簡潔迭代式費氏數列範例可以完美地編譯和執行。 mem2reg pass 將我們所有的堆疊變數優化為 SSA 暫存器,在需要的地方插入 PHI 節點,而我們的編譯器前端仍然很簡單:完全不需要「迭代支配邊界」的計算。
7.8. 完整程式碼清單¶
以下是我們執行範例的完整程式碼清單,其中增強了可變變數和 var/in 支援。要建置此範例,請使用
# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
# Run
./toy
程式碼如下
#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include "llvm/Transforms/Utils.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::orc;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2,
tok_extern = -3,
// primary
tok_identifier = -4,
tok_number = -5,
// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10,
// operators
tok_binary = -11,
tok_unary = -12,
// var definition
tok_var = -13
};
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;
if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
if (IdentifierStr == "if")
return tok_if;
if (IdentifierStr == "then")
return tok_then;
if (IdentifierStr == "else")
return tok_else;
if (IdentifierStr == "for")
return tok_for;
if (IdentifierStr == "in")
return tok_in;
if (IdentifierStr == "binary")
return tok_binary;
if (IdentifierStr == "unary")
return tok_unary;
if (IdentifierStr == "var")
return tok_var;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do
LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
virtual ~ExprAST() = default;
virtual Value *codegen() = 0;
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
public:
VariableExprAST(const std::string &Name) : Name(Name) {}
Value *codegen() override;
const std::string &getName() const { return Name; }
};
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
std::unique_ptr<ExprAST> Operand;
public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(Opcode), Operand(std::move(Operand)) {}
Value *codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;
public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;
public:
CallExprAST(const std::string &Callee,
std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}
Value *codegen() override;
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
std::unique_ptr<ExprAST> Cond, Then, Else;
public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *codegen() override;
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)
: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}
Value *codegen() override;
};
/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
std::unique_ptr<ExprAST> Body;
public:
VarExprAST(
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
std::unique_ptr<ExprAST> Body)
: VarNames(std::move(VarNames)), Body(std::move(Body)) {}
Value *codegen() override;
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args,
bool IsOperator = false, unsigned Prec = 0)
: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
Precedence(Prec) {}
Function *codegen();
const std::string &getName() const { return Name; }
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];
}
unsigned getBinaryPrecedence() const { return Precedence; }
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *codegen();
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;
return TokPrec;
}
/// LogError* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;
}
std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;
}
static std::unique_ptr<ExprAST> ParseExpression();
/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = std::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;
if (CurTok != ')')
return LogError("expected ')'");
getNextToken(); // eat ).
return V;
}
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return std::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {
if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));
else
return nullptr;
if (CurTok == ')')
break;
if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return std::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
if (CurTok != tok_then)
return LogError("expected then");
getNextToken(); // eat the then
auto Then = ParseExpression();
if (!Then)
return nullptr;
if (CurTok != tok_else)
return LogError("expected else");
getNextToken();
auto Else = ParseExpression();
if (!Else)
return nullptr;
return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return LogError("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return LogError("expected '=' after for");
getNextToken(); // eat '='.
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return LogError("expected ',' after for start value");
getNextToken();
auto End = ParseExpression();
if (!End)
return nullptr;
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)
return nullptr;
}
if (CurTok != tok_in)
return LogError("expected 'in' after for");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));
}
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
// At least one variable name is required.
if (CurTok != tok_identifier)
return LogError("expected identifier after var");
while (true) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
// Read the optional initializer.
std::unique_ptr<ExprAST> Init = nullptr;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
if (!Init)
return nullptr;
}
VarNames.push_back(std::make_pair(Name, std::move(Init)));
// End of var list, exit loop.
if (CurTok != ',')
break;
getNextToken(); // eat the ','.
if (CurTok != tok_identifier)
return LogError("expected identifier list after var");
}
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return LogError("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
case tok_if:
return ParseIfExpr();
case tok_for:
return ParseForExpr();
case tok_var:
return ParseVarExpr();
}
}
/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
return nullptr;
}
/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)
return nullptr;
}
// Merge LHS/RHS.
LHS =
std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}
/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");
case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;
case tok_unary:
getNextToken();
if (!isascii(CurTok))
return LogErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;
case tok_binary:
getNextToken();
if (!isascii(CurTok))
return LogErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
return LogErrorP("Invalid precedence: must be 1..100");
BinaryPrecedence = (unsigned)NumVal;
getNextToken();
}
break;
}
if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");
return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;
if (auto E = ParseExpression())
return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
return nullptr;
}
/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
std::vector<std::string>());
return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
return nullptr;
}
/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
static std::unique_ptr<LLVMContext> TheContext;
static std::unique_ptr<Module> TheModule;
static std::unique_ptr<IRBuilder<>> Builder;
static std::map<std::string, AllocaInst *> NamedValues;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::unique_ptr<FunctionPassManager> TheFPM;
static std::unique_ptr<LoopAnalysisManager> TheLAM;
static std::unique_ptr<FunctionAnalysisManager> TheFAM;
static std::unique_ptr<CGSCCAnalysisManager> TheCGAM;
static std::unique_ptr<ModuleAnalysisManager> TheMAM;
static std::unique_ptr<PassInstrumentationCallbacks> ThePIC;
static std::unique_ptr<StandardInstrumentations> TheSI;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
static ExitOnError ExitOnErr;
Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;
}
Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;
// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();
// If no existing prototype exists, return null.
return nullptr;
}
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
StringRef VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
}
Value *NumberExprAST::codegen() {
return ConstantFP::get(*TheContext, APFloat(Val));
}
Value *VariableExprAST::codegen() {
// Look this variable up in the function.
AllocaInst *A = NamedValues[Name];
if (!A)
return LogErrorV("Unknown variable name");
// Load the value.
return Builder->CreateLoad(A->getAllocatedType(), A, Name.c_str());
}
Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)
return nullptr;
Function *F = getFunction(std::string("unary") + Opcode);
if (!F)
return LogErrorV("Unknown unary operator");
return Builder->CreateCall(F, OperandV, "unop");
}
Value *BinaryExprAST::codegen() {
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
if (!LHSE)
return LogErrorV("destination of '=' must be a variable");
// Codegen the RHS.
Value *Val = RHS->codegen();
if (!Val)
return nullptr;
// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
if (!Variable)
return LogErrorV("Unknown variable name");
Builder->CreateStore(Val, Variable);
return Val;
}
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;
switch (Op) {
case '+':
return Builder->CreateFAdd(L, R, "addtmp");
case '-':
return Builder->CreateFSub(L, R, "subtmp");
case '*':
return Builder->CreateFMul(L, R, "multmp");
case '<':
L = Builder->CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
default:
break;
}
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");
Value *Ops[] = {L, R};
return Builder->CreateCall(F, Ops, "binop");
}
Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())
return nullptr;
}
return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;
// Convert condition to a bool by comparing non-equal to 0.0.
CondV = Builder->CreateFCmpONE(
CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
Builder->CreateCondBr(CondV, ThenBB, ElseBB);
// Emit then value.
Builder->SetInsertPoint(ThenBB);
Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder->GetInsertBlock();
// Emit else block.
TheFunction->insert(TheFunction->end(), ElseBB);
Builder->SetInsertPoint(ElseBB);
Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder->GetInsertBlock();
// Emit merge block.
TheFunction->insert(TheFunction->end(), MergeBB);
Builder->SetInsertPoint(MergeBB);
PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
// Output for-loop as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;
// Store the value into the alloca.
Builder->CreateStore(StartVal, Alloca);
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
Builder->CreateBr(LoopBB);
// Start insertion in LoopBB.
Builder->SetInsertPoint(LoopBB);
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = NamedValues[VarName];
NamedValues[VarName] = Alloca;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;
// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)
return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
}
// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar =
Builder->CreateLoad(Alloca->getAllocatedType(), Alloca, VarName.c_str());
Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
Builder->CreateStore(NextVar, Alloca);
// Convert condition to a bool by comparing non-equal to 0.0.
EndCond = Builder->CreateFCmpONE(
EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
// Create the "after loop" block and insert it.
BasicBlock *AfterBB =
BasicBlock::Create(*TheContext, "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
Builder->SetInsertPoint(AfterBB);
// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;
else
NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(*TheContext));
}
Value *VarExprAST::codegen() {
std::vector<AllocaInst *> OldBindings;
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
ExprAST *Init = VarNames[i].second.get();
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {
InitVal = Init->codegen();
if (!InitVal)
return nullptr;
} else { // If not specified, use 0.0.
InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
}
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
Builder->CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(NamedValues[VarName]);
// Remember this binding.
NamedValues[VarName] = Alloca;
}
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->codegen();
if (!BodyVal)
return nullptr;
// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
NamedValues[VarNames[i].first] = OldBindings[i];
// Return the body computation.
return BodyVal;
}
Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
FunctionType *FT =
FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);
return F;
}
Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;
// If this is an operator, install it.
if (P.isBinaryOp())
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
Builder->SetInsertPoint(BB);
// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args()) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
// Store the initial value into the alloca.
Builder->CreateStore(&Arg, Alloca);
// Add arguments to variable symbol table.
NamedValues[std::string(Arg.getName())] = Alloca;
}
if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder->CreateRet(RetVal);
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
// Run the optimizer on the function.
TheFPM->run(*TheFunction, *TheFAM);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
if (P.isBinaryOp())
BinopPrecedence.erase(P.getOperatorName());
return nullptr;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static void InitializeModuleAndManagers() {
// Open a new context and module.
TheContext = std::make_unique<LLVMContext>();
TheModule = std::make_unique<Module>("KaleidoscopeJIT", *TheContext);
TheModule->setDataLayout(TheJIT->getDataLayout());
// Create a new builder for the module.
Builder = std::make_unique<IRBuilder<>>(*TheContext);
// Create new pass and analysis managers.
TheFPM = std::make_unique<FunctionPassManager>();
TheLAM = std::make_unique<LoopAnalysisManager>();
TheFAM = std::make_unique<FunctionAnalysisManager>();
TheCGAM = std::make_unique<CGSCCAnalysisManager>();
TheMAM = std::make_unique<ModuleAnalysisManager>();
ThePIC = std::make_unique<PassInstrumentationCallbacks>();
TheSI = std::make_unique<StandardInstrumentations>(*TheContext,
/*DebugLogging*/ true);
TheSI->registerCallbacks(*ThePIC, TheMAM.get());
// Add transform passes.
// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->addPass(InstCombinePass());
// Reassociate expressions.
TheFPM->addPass(ReassociatePass());
// Eliminate Common SubExpressions.
TheFPM->addPass(GVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
TheFPM->addPass(SimplifyCFGPass());
// Register analysis passes used in these transform passes.
PassBuilder PB;
PB.registerModuleAnalyses(*TheMAM);
PB.registerFunctionAnalyses(*TheFAM);
PB.crossRegisterProxies(*TheLAM, *TheFAM, *TheCGAM, *TheMAM);
}
static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->print(errs());
fprintf(stderr, "\n");
ExitOnErr(TheJIT->addModule(
ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
InitializeModuleAndManagers();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->print(errs());
fprintf(stderr, "\n");
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (FnAST->codegen()) {
// Create a ResourceTracker to track JIT'd memory allocated to our
// anonymous expression -- that way we can free it after executing.
auto RT = TheJIT->getMainJITDylib().createResourceTracker();
auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
InitializeModuleAndManagers();
// Search the JIT for the __anon_expr symbol.
auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));
// Get the symbol's address and cast it to the right type (takes no
// arguments, returns a double) so we can call it as a native function.
double (*FP)() = ExprSymbol.getAddress().toPtr<double (*)()>();
fprintf(stderr, "Evaluated to %f\n", FP());
// Delete the anonymous expression module from the JIT.
ExitOnErr(RT->remove());
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;
case ';': // ignore top-level semicolons.
getNextToken();
break;
case tok_def:
HandleDefinition();
break;
case tok_extern:
HandleExtern();
break;
default:
HandleTopLevelExpression();
break;
}
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif
/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
fputc((char)X, stderr);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();
TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
InitializeModuleAndManagers();
// Run the main "interpreter loop" now.
MainLoop();
return 0;
}