6. Kaleidoscope:擴展語言:使用者定義運算子¶
6.1. 第 6 章 簡介¶
歡迎來到「使用 LLVM 實作語言」教學文件的第 6 章。在教學文件的這個階段,我們現在有一個功能完整的語言,它相當簡潔,但也很有用。然而,它仍然有一個很大的問題。我們的語言沒有很多有用的運算子(例如除法、邏輯否定,甚至除了小於之外的任何比較)。
本章教學文件將深入探討如何在簡單而優美的 Kaleidoscope 語言中加入使用者定義的運算子。在某些方面,這次深入探討使我們的語言變得簡單而醜陋,但同時也變得強大。建立自己的語言最棒的事情之一是,您可以決定什麼是好或壞。在本教學文件中,我們將假設將其作為展示一些有趣的語法分析技術的方式是可以接受的。
在本教學文件結束時,我們將執行一個範例 Kaleidoscope 應用程式,該應用程式渲染曼德博集合。這提供了一個範例,說明您可以使用 Kaleidoscope 及其功能集構建什麼。
6.2. 使用者定義運算子:構想¶
我們將添加到 Kaleidoscope 的「運算子多載」比 C++ 等語言更通用。在 C++ 中,您只能重新定義現有的運算子:您無法以程式設計方式更改語法、引入新的運算子、更改優先順序等等。在本章中,我們將把此功能添加到 Kaleidoscope 中,這將讓使用者完善支援的運算子集合。
在這樣的教學文件中深入探討使用者定義運算子的目的是展示使用手寫剖析器的強大功能和靈活性。到目前為止,我們一直在實作的剖析器,對於語法的大部分使用遞迴下降,對於表達式則使用運算子優先順序剖析。有關詳細資訊,請參閱第 2 章。透過使用運算子優先順序剖析,可以非常輕鬆地讓程式設計師將新的運算子引入語法中:語法會隨著 JIT 執行而動態擴展。
我們將新增的兩個特定功能是可程式化的一元運算子(目前,Kaleidoscope 完全沒有一元運算子)以及二元運算子。範例如下:
# Logical unary not.
def unary!(v)
if v then
0
else
1;
# Define > with the same precedence as <.
def binary> 10 (LHS RHS)
RHS < LHS;
# Binary "logical or", (note that it does not "short circuit")
def binary| 5 (LHS RHS)
if LHS then
1
else if RHS then
1
else
0;
# Define = with slightly lower precedence than relationals.
def binary= 9 (LHS RHS)
!(LHS < RHS | LHS > RHS);
許多語言都渴望能夠以語言本身實作其標準執行時期函式庫。在 Kaleidoscope 中,我們可以在函式庫中實作語言的重要部分!
我們將把這些功能的實作分解為兩個部分:實作對使用者定義二元運算子的支援,以及新增一元運算子。
6.3. 使用者定義二元運算子¶
在我們目前的框架下,新增對使用者定義二元運算子的支援非常簡單。我們先新增對 unary/binary 關鍵字的支援
enum Token {
...
// operators
tok_binary = -11,
tok_unary = -12
};
...
static int gettok() {
...
if (IdentifierStr == "for")
return tok_for;
if (IdentifierStr == "in")
return tok_in;
if (IdentifierStr == "binary")
return tok_binary;
if (IdentifierStr == "unary")
return tok_unary;
return tok_identifier;
這只是為 unary 和 binary 關鍵字新增詞法分析器支援,就像我們在之前的章節中所做的那樣。關於我們目前 AST 的一個好處是,我們透過使用它們的 ASCII 碼作為運算碼來表示二元運算子以實現完全通用化。對於我們擴展的運算子,我們將使用相同的表示法,因此我們不需要任何新的 AST 或剖析器支援。
另一方面,我們必須能夠表示這些新運算子的定義,在函式定義的「def binary| 5」部分中。在我們目前的語法中,函式定義的「名稱」被剖析為「prototype」產生式,並進入 PrototypeAST
AST 節點。為了將我們新的使用者定義運算子表示為原型,我們必須像這樣擴展 PrototypeAST
AST 節點
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its argument names as well as if it is an operator.
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args,
bool IsOperator = false, unsigned Prec = 0)
: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
Precedence(Prec) {}
Function *codegen();
const std::string &getName() const { return Name; }
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];
}
unsigned getBinaryPrecedence() const { return Precedence; }
};
基本上,除了知道原型的名稱之外,我們現在還追蹤它是否是運算子,如果是,則運算子的優先順序為何。優先順序僅用於二元運算子(如下所示,它不適用於一元運算子)。現在我們有了一種表示使用者定義運算子原型的方法,我們需要剖析它
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");
case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;
case tok_binary:
getNextToken();
if (!isascii(CurTok))
return LogErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
return LogErrorP("Invalid precedence: must be 1..100");
BinaryPrecedence = (unsigned)NumVal;
getNextToken();
}
break;
}
if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");
return std::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
BinaryPrecedence);
}
這都是相當簡單的剖析程式碼,而且我們在過去已經看過很多類似的程式碼。上面程式碼中一個有趣的部分是設定二元運算子的 FnName
的幾行程式碼。這會為新定義的「@」運算子建構類似「binary@」的名稱。然後,它利用了 LLVM 符號表中的符號名稱允許包含任何字元(包括嵌入的空字元)的事實。
接下來要新增的有趣之處是對這些二元運算子的程式碼產生支援。鑑於我們目前的結構,這只是為我們現有的二元運算子節點新增一個預設案例
Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;
switch (Op) {
case '+':
return Builder->CreateFAdd(L, R, "addtmp");
case '-':
return Builder->CreateFSub(L, R, "subtmp");
case '*':
return Builder->CreateFMul(L, R, "multmp");
case '<':
L = Builder->CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext),
"booltmp");
default:
break;
}
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");
Value *Ops[2] = { L, R };
return Builder->CreateCall(F, Ops, "binop");
}
如您在上面看到的,新程式碼實際上非常簡單。它只是在符號表中查閱適當的運算子,並產生對它的函式呼叫。由於使用者定義的運算子只是作為普通函式建構的(因為「原型」歸結為具有正確名稱的函式),因此一切都到位了。
我們遺漏的最後一段程式碼是一些頂層魔法
Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;
// If this is an operator, install it.
if (P.isBinaryOp())
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
...
基本上,在產生函式的程式碼之前,如果它是使用者定義的運算子,我們會將其註冊在優先順序表中。這允許我們已有的二元運算子剖析邏輯來處理它。由於我們正在使用完全通用的運算子優先順序剖析器,因此這就是我們「擴展語法」所需的全部操作。
現在我們有了有用的使用者定義二元運算子。這在我們為其他運算子建立的先前框架之上構建了很多。新增一元運算子更具挑戰性,因為我們還沒有任何框架來支援它 - 讓我們看看需要什麼。
6.4. 使用者定義一元運算子¶
由於我們目前在 Kaleidoscope 語言中不支援一元運算子,因此我們需要新增所有內容來支援它們。在上面,我們為詞法分析器新增了對 'unary' 關鍵字的簡單支援。除此之外,我們還需要一個 AST 節點
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
std::unique_ptr<ExprAST> Operand;
public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(Opcode), Operand(std::move(Operand)) {}
Value *codegen() override;
};
現在這個 AST 節點非常簡單且顯而易見。它直接反映了二元運算子 AST 節點,只是它只有一個子節點。有了這個,我們需要新增剖析邏輯。剖析一元運算子非常簡單:我們將新增一個新函式來執行此操作
/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
return nullptr;
}
我們新增的語法在這裡非常簡單明瞭。如果我們在剖析主要運算子時看到一元運算子,我們會將該運算子作為前綴吃掉,並將剩餘部分剖析為另一個一元運算子。這允許我們處理多個一元運算子(例如「!!x」)。請注意,一元運算子不能像二元運算子那樣具有不明確的剖析,因此不需要優先順序資訊。
這個函式的問題是我們需要從某個地方呼叫 ParseUnary。為此,我們將 ParsePrimary 的先前呼叫者變更為呼叫 ParseUnary
/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
std::unique_ptr<ExprAST> LHS) {
...
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
...
}
/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
return ParseBinOpRHS(0, std::move(LHS));
}
透過這兩個簡單的變更,我們現在能夠剖析一元運算子並為它們建構 AST。接下來,我們需要為原型新增剖析器支援,以剖析一元運算子原型。我們使用以下內容擴展上面的二元運算子程式碼
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");
case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;
case tok_unary:
getNextToken();
if (!isascii(CurTok))
return LogErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;
case tok_binary:
...
與二元運算子一樣,我們使用包含運算子字元的名稱來命名一元運算子。這在程式碼產生時對我們有所幫助。說到程式碼產生,我們需要新增的最後一部分是對一元運算子的程式碼產生支援。它看起來像這樣
Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)
return nullptr;
Function *F = getFunction(std::string("unary") + Opcode);
if (!F)
return LogErrorV("Unknown unary operator");
return Builder->CreateCall(F, OperandV, "unop");
}
此程式碼與二元運算子的程式碼類似,但更簡單。它更簡單主要是因為它不需要處理任何預定義的運算子。
6.5. 實際測試¶
雖然有點難以置信,但透過我們在最近幾章中介紹的一些簡單擴展,我們已經成長為一種真正的語言。有了這個,我們可以做很多有趣的事情,包括 I/O、數學和一堆其他事情。例如,我們現在可以新增一個不錯的序列運算子(printd 定義為印出指定的值和換行符號)
ready> extern printd(x);
Read extern:
declare double @printd(double)
ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.
...
ready> printd(123) : printd(456) : printd(789);
123.000000
456.000000
789.000000
Evaluated to 0.000000
我們還可以定義一堆其他「原始」運算,例如
# Logical unary not.
def unary!(v)
if v then
0
else
1;
# Unary negate.
def unary-(v)
0-v;
# Define > with the same precedence as <.
def binary> 10 (LHS RHS)
RHS < LHS;
# Binary logical or, which does not short circuit.
def binary| 5 (LHS RHS)
if LHS then
1
else if RHS then
1
else
0;
# Binary logical and, which does not short circuit.
def binary& 6 (LHS RHS)
if !LHS then
0
else
!!RHS;
# Define = with slightly lower precedence than relationals.
def binary = 9 (LHS RHS)
!(LHS < RHS | LHS > RHS);
# Define ':' for sequencing: as a low-precedence operator that ignores operands
# and just returns the RHS.
def binary : 1 (x y) y;
鑑於先前的 if/then/else 支援,我們還可以為 I/O 定義有趣的函式。例如,以下印出一個字元,其「密度」反映了傳遞的值:值越低,字元越密集
ready> extern putchard(char);
...
ready> def printdensity(d)
if d > 8 then
putchard(32) # ' '
else if d > 4 then
putchard(46) # '.'
else if d > 2 then
putchard(43) # '+'
else
putchard(42); # '*'
...
ready> printdensity(1): printdensity(2): printdensity(3):
printdensity(4): printdensity(5): printdensity(9):
putchard(10);
**++.
Evaluated to 0.000000
基於這些簡單的原始運算,我們可以開始定義更有趣的東西。例如,以下是一個小函式,用於判斷複數平面中某個函式發散所需的迭代次數
# Determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane.
def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then
iters
else
mandelconverger(real*real - imag*imag + creal,
2*real*imag + cimag,
iters+1, creal, cimag);
# Return the number of iterations required for the iteration to escape
def mandelconverge(real imag)
mandelconverger(real, imag, 0, real, imag);
這個「z = z2 + c
」函式是一個優美的小生物,它是計算曼德博集合的基礎。我們的 mandelconverge
函式傳回複數軌跡逃逸所需的迭代次數,飽和到 255。這個函式本身並不是很有用,但是如果您在二維平面上繪製它的值,您可以看到曼德博集合。鑑於我們在這裡僅限於使用 putchard,我們驚人的圖形輸出受到限制,但我們可以一起使用上面的密度繪圖器來製作一些東西
# Compute and plot the mandelbrot set with the specified 2 dimensional range
# info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in
printdensity(mandelconverge(x,y)))
: putchard(10)
)
# mandel - This is a convenient helper function for plotting the mandelbrot set
# from the specified position with the specified Magnification.
def mandel(realstart imagstart realmag imagmag)
mandelhelp(realstart, realstart+realmag*78, realmag,
imagstart, imagstart+imagmag*40, imagmag);
有了這個,我們可以嘗試繪製曼德博集合!讓我們試試看
ready> mandel(-2.3, -1.3, 0.05, 0.07);
*******************************+++++++++++*************************************
*************************+++++++++++++++++++++++*******************************
**********************+++++++++++++++++++++++++++++****************************
*******************+++++++++++++++++++++.. ...++++++++*************************
*****************++++++++++++++++++++++.... ...+++++++++***********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
**************+++++++++++++++++++++++.... ....+++++++++********************
*************++++++++++++++++++++++...... .....++++++++*******************
************+++++++++++++++++++++....... .......+++++++******************
***********+++++++++++++++++++.... ... .+++++++*****************
**********+++++++++++++++++....... .+++++++****************
*********++++++++++++++........... ...+++++++***************
********++++++++++++............ ...++++++++**************
********++++++++++... .......... .++++++++**************
*******+++++++++..... .+++++++++*************
*******++++++++...... ..+++++++++*************
*******++++++....... ..+++++++++*************
*******+++++...... ..+++++++++*************
*******.... .... ...+++++++++*************
*******.... . ...+++++++++*************
*******+++++...... ...+++++++++*************
*******++++++....... ..+++++++++*************
*******++++++++...... .+++++++++*************
*******+++++++++..... ..+++++++++*************
********++++++++++... .......... .++++++++**************
********++++++++++++............ ...++++++++**************
*********++++++++++++++.......... ...+++++++***************
**********++++++++++++++++........ .+++++++****************
**********++++++++++++++++++++.... ... ..+++++++****************
***********++++++++++++++++++++++....... .......++++++++*****************
************+++++++++++++++++++++++...... ......++++++++******************
**************+++++++++++++++++++++++.... ....++++++++********************
***************+++++++++++++++++++++++..... ...+++++++++*********************
*****************++++++++++++++++++++++.... ...++++++++***********************
*******************+++++++++++++++++++++......++++++++*************************
*********************++++++++++++++++++++++.++++++++***************************
*************************+++++++++++++++++++++++*******************************
******************************+++++++++++++************************************
*******************************************************************************
*******************************************************************************
*******************************************************************************
Evaluated to 0.000000
ready> mandel(-2, -1, 0.02, 0.04);
**************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
*******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
*****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
**************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
**********++++++++++++++++++++++++++++++++++++++++++++++.............
********+++++++++++++++++++++++++++++++++++++++++++..................
*******+++++++++++++++++++++++++++++++++++++++.......................
******+++++++++++++++++++++++++++++++++++...........................
*****++++++++++++++++++++++++++++++++............................
*****++++++++++++++++++++++++++++...............................
****++++++++++++++++++++++++++...... .........................
***++++++++++++++++++++++++......... ...... ...........
***++++++++++++++++++++++............
**+++++++++++++++++++++..............
**+++++++++++++++++++................
*++++++++++++++++++.................
*++++++++++++++++............ ...
*++++++++++++++..............
*+++....++++................
*.......... ...........
*
*.......... ...........
*+++....++++................
*++++++++++++++..............
*++++++++++++++++............ ...
*++++++++++++++++++.................
**+++++++++++++++++++................
**+++++++++++++++++++++..............
***++++++++++++++++++++++............
***++++++++++++++++++++++++......... ...... ...........
****++++++++++++++++++++++++++...... .........................
*****++++++++++++++++++++++++++++...............................
*****++++++++++++++++++++++++++++++++............................
******+++++++++++++++++++++++++++++++++++...........................
*******+++++++++++++++++++++++++++++++++++++++.......................
********+++++++++++++++++++++++++++++++++++++++++++..................
Evaluated to 0.000000
ready> mandel(-0.9, -1.4, 0.02, 0.03);
*******************************************************************************
*******************************************************************************
*******************************************************************************
**********+++++++++++++++++++++************************************************
*+++++++++++++++++++++++++++++++++++++++***************************************
+++++++++++++++++++++++++++++++++++++++++++++**********************************
++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
+++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
+++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
+++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
+++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
++++++++++++++++++++++++............. .......++++++++++++++++++++++******
+++++++++++++++++++++++............. ........+++++++++++++++++++++++****
++++++++++++++++++++++........... ..........++++++++++++++++++++++***
++++++++++++++++++++........... .........++++++++++++++++++++++*
++++++++++++++++++............ ...........++++++++++++++++++++
++++++++++++++++............... .............++++++++++++++++++
++++++++++++++................. ...............++++++++++++++++
++++++++++++.................. .................++++++++++++++
+++++++++.................. .................+++++++++++++
++++++........ . ......... ..++++++++++++
++............ ...... ....++++++++++
.............. ...++++++++++
.............. ....+++++++++
.............. .....++++++++
............. ......++++++++
........... .......++++++++
......... ........+++++++
......... ........+++++++
......... ....+++++++
........ ...+++++++
....... ...+++++++
....+++++++
.....+++++++
....+++++++
....+++++++
....+++++++
Evaluated to 0.000000
ready> ^D
此時,您可能開始意識到 Kaleidoscope 是一種真實且功能強大的語言。它可能不是自相似的 :),但它可以用於繪製自相似的東西!
至此,我們結束了本教學文件的「新增使用者定義運算子」章節。我們已成功擴充了我們的語言,新增了在函式庫中擴展語言的能力,並且我們已展示如何使用它在 Kaleidoscope 中建構一個簡單但有趣的終端使用者應用程式。目前,Kaleidoscope 可以建構各種功能性應用程式,並且可以呼叫具有副作用的函式,但它實際上無法自行定義和變更變數。
引人注目的是,變數變更是某些語言的重要功能,而且在不為您的前端新增「SSA 建構」階段的情況下,如何新增對可變變數的支援根本不明顯。在下一章中,我們將描述如何在不於前端建構 SSA 的情況下新增變數變更。
6.6. 完整程式碼列表¶
以下是我們正在運行的範例的完整程式碼列表,其中增強了對使用者定義運算子的支援。要建構此範例,請使用
# Compile
clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
# Run
./toy
在某些平台上,您需要在連結時指定 -rdynamic 或 -Wl,–export-dynamic。這確保了在主可執行檔中定義的符號會匯出到動態連結器,因此在運行時可用於符號解析。如果您將支援程式碼編譯到共享函式庫中,則不需要這樣做,儘管這樣做會在 Windows 上造成問題。
以下是程式碼
#include "../include/KaleidoscopeJIT.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>
using namespace llvm;
using namespace llvm::orc;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2,
tok_extern = -3,
// primary
tok_identifier = -4,
tok_number = -5,
// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10,
// operators
tok_binary = -11,
tok_unary = -12
};
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;
if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
if (IdentifierStr == "if")
return tok_if;
if (IdentifierStr == "then")
return tok_then;
if (IdentifierStr == "else")
return tok_else;
if (IdentifierStr == "for")
return tok_for;
if (IdentifierStr == "in")
return tok_in;
if (IdentifierStr == "binary")
return tok_binary;
if (IdentifierStr == "unary")
return tok_unary;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), nullptr);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do
LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
virtual ~ExprAST() = default;
virtual Value *codegen() = 0;
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
public:
NumberExprAST(double Val) : Val(Val) {}
Value *codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
public:
VariableExprAST(const std::string &Name) : Name(Name) {}
Value *codegen() override;
};
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
std::unique_ptr<ExprAST> Operand;
public:
UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(Opcode), Operand(std::move(Operand)) {}
Value *codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
std::unique_ptr<ExprAST> LHS, RHS;
public:
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<std::unique_ptr<ExprAST>> Args;
public:
CallExprAST(const std::string &Callee,
std::vector<std::unique_ptr<ExprAST>> Args)
: Callee(Callee), Args(std::move(Args)) {}
Value *codegen() override;
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
std::unique_ptr<ExprAST> Cond, Then, Else;
public:
IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
std::unique_ptr<ExprAST> Else)
: Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *codegen() override;
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
std::unique_ptr<ExprAST> Body)
: VarName(VarName), Start(std::move(Start)), End(std::move(End)),
Step(std::move(Step)), Body(std::move(Body)) {}
Value *codegen() override;
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes), as well as if it is an operator.
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
public:
PrototypeAST(const std::string &Name, std::vector<std::string> Args,
bool IsOperator = false, unsigned Prec = 0)
: Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
Precedence(Prec) {}
Function *codegen();
const std::string &getName() const { return Name; }
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];
}
unsigned getBinaryPrecedence() const { return Precedence; }
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *codegen();
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;
return TokPrec;
}
/// Error* - These are little helper functions for error handling.
std::unique_ptr<ExprAST> LogError(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return nullptr;
}
std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
LogError(Str);
return nullptr;
}
static std::unique_ptr<ExprAST> ParseExpression();
/// numberexpr ::= number
static std::unique_ptr<ExprAST> ParseNumberExpr() {
auto Result = std::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
auto V = ParseExpression();
if (!V)
return nullptr;
if (CurTok != ')')
return LogError("expected ')'");
getNextToken(); // eat ).
return V;
}
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return std::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (true) {
if (auto Arg = ParseExpression())
Args.push_back(std::move(Arg));
else
return nullptr;
if (CurTok == ')')
break;
if (CurTok != ',')
return LogError("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return std::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
if (CurTok != tok_then)
return LogError("expected then");
getNextToken(); // eat the then
auto Then = ParseExpression();
if (!Then)
return nullptr;
if (CurTok != tok_else)
return LogError("expected else");
getNextToken();
auto Else = ParseExpression();
if (!Else)
return nullptr;
return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return LogError("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return LogError("expected '=' after for");
getNextToken(); // eat '='.
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return LogError("expected ',' after for start value");
getNextToken();
auto End = ParseExpression();
if (!End)
return nullptr;
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (!Step)
return nullptr;
}
if (CurTok != tok_in)
return LogError("expected 'in' after for");
getNextToken(); // eat 'in'.
auto Body = ParseExpression();
if (!Body)
return nullptr;
return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
std::move(Step), std::move(Body));
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return LogError("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
case tok_if:
return ParseIfExpr();
case tok_for:
return ParseForExpr();
}
}
/// unary
/// ::= primary
/// ::= '!' unary
static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (auto Operand = ParseUnary())
return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
return nullptr;
}
/// binoprhs
/// ::= ('+' unary)*
static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (true) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
if (!RHS)
return nullptr;
}
// Merge LHS/RHS.
LHS =
std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}
/// expression
/// ::= unary binoprhs
///
static std::unique_ptr<ExprAST> ParseExpression() {
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
switch (CurTok) {
default:
return LogErrorP("Expected function name in prototype");
case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;
case tok_unary:
getNextToken();
if (!isascii(CurTok))
return LogErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;
case tok_binary:
getNextToken();
if (!isascii(CurTok))
return LogErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
return LogErrorP("Invalid precedence: must be 1..100");
BinaryPrecedence = (unsigned)NumVal;
getNextToken();
}
break;
}
if (CurTok != '(')
return LogErrorP("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return LogErrorP("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return LogErrorP("Invalid number of operands for operator");
return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
auto Proto = ParsePrototype();
if (!Proto)
return nullptr;
if (auto E = ParseExpression())
return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
return nullptr;
}
/// toplevelexpr ::= expression
static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
if (auto E = ParseExpression()) {
// Make an anonymous proto.
auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
std::vector<std::string>());
return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
return nullptr;
}
/// external ::= 'extern' prototype
static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
static std::unique_ptr<LLVMContext> TheContext;
static std::unique_ptr<Module> TheModule;
static std::unique_ptr<IRBuilder<>> Builder;
static std::map<std::string, Value *> NamedValues;
static std::unique_ptr<KaleidoscopeJIT> TheJIT;
static std::unique_ptr<FunctionPassManager> TheFPM;
static std::unique_ptr<LoopAnalysisManager> TheLAM;
static std::unique_ptr<FunctionAnalysisManager> TheFAM;
static std::unique_ptr<CGSCCAnalysisManager> TheCGAM;
static std::unique_ptr<ModuleAnalysisManager> TheMAM;
static std::unique_ptr<PassInstrumentationCallbacks> ThePIC;
static std::unique_ptr<StandardInstrumentations> TheSI;
static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
static ExitOnError ExitOnErr;
Value *LogErrorV(const char *Str) {
LogError(Str);
return nullptr;
}
Function *getFunction(std::string Name) {
// First, see if the function has already been added to the current module.
if (auto *F = TheModule->getFunction(Name))
return F;
// If not, check whether we can codegen the declaration from some existing
// prototype.
auto FI = FunctionProtos.find(Name);
if (FI != FunctionProtos.end())
return FI->second->codegen();
// If no existing prototype exists, return null.
return nullptr;
}
Value *NumberExprAST::codegen() {
return ConstantFP::get(*TheContext, APFloat(Val));
}
Value *VariableExprAST::codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (!V)
return LogErrorV("Unknown variable name");
return V;
}
Value *UnaryExprAST::codegen() {
Value *OperandV = Operand->codegen();
if (!OperandV)
return nullptr;
Function *F = getFunction(std::string("unary") + Opcode);
if (!F)
return LogErrorV("Unknown unary operator");
return Builder->CreateCall(F, OperandV, "unop");
}
Value *BinaryExprAST::codegen() {
Value *L = LHS->codegen();
Value *R = RHS->codegen();
if (!L || !R)
return nullptr;
switch (Op) {
case '+':
return Builder->CreateFAdd(L, R, "addtmp");
case '-':
return Builder->CreateFSub(L, R, "subtmp");
case '*':
return Builder->CreateFMul(L, R, "multmp");
case '<':
L = Builder->CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
default:
break;
}
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");
Value *Ops[] = {L, R};
return Builder->CreateCall(F, Ops, "binop");
}
Value *CallExprAST::codegen() {
// Look up the name in the global module table.
Function *CalleeF = getFunction(Callee);
if (!CalleeF)
return LogErrorV("Unknown function referenced");
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return LogErrorV("Incorrect # arguments passed");
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->codegen());
if (!ArgsV.back())
return nullptr;
}
return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::codegen() {
Value *CondV = Cond->codegen();
if (!CondV)
return nullptr;
// Convert condition to a bool by comparing non-equal to 0.0.
CondV = Builder->CreateFCmpONE(
CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
Function *TheFunction = Builder->GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
Builder->CreateCondBr(CondV, ThenBB, ElseBB);
// Emit then value.
Builder->SetInsertPoint(ThenBB);
Value *ThenV = Then->codegen();
if (!ThenV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder->GetInsertBlock();
// Emit else block.
TheFunction->insert(TheFunction->end(), ElseBB);
Builder->SetInsertPoint(ElseBB);
Value *ElseV = Else->codegen();
if (!ElseV)
return nullptr;
Builder->CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder->GetInsertBlock();
// Emit merge block.
TheFunction->insert(TheFunction->end(), MergeBB);
Builder->SetInsertPoint(MergeBB);
PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
// Output for-loop as:
// ...
// start = startexpr
// goto loop
// loop:
// variable = phi [start, loopheader], [nextvariable, loopend]
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// nextvariable = variable + step
// endcond = endexpr
// br endcond, loop, endloop
// outloop:
Value *ForExprAST::codegen() {
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->codegen();
if (!StartVal)
return nullptr;
// Make the new basic block for the loop header, inserting after current
// block.
Function *TheFunction = Builder->GetInsertBlock()->getParent();
BasicBlock *PreheaderBB = Builder->GetInsertBlock();
BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
Builder->CreateBr(LoopBB);
// Start insertion in LoopBB.
Builder->SetInsertPoint(LoopBB);
// Start the PHI node with an entry for Start.
PHINode *Variable =
Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, VarName);
Variable->addIncoming(StartVal, PreheaderBB);
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
Value *OldVal = NamedValues[VarName];
NamedValues[VarName] = Variable;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->codegen())
return nullptr;
// Emit the step value.
Value *StepVal = nullptr;
if (Step) {
StepVal = Step->codegen();
if (!StepVal)
return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
}
Value *NextVar = Builder->CreateFAdd(Variable, StepVal, "nextvar");
// Compute the end condition.
Value *EndCond = End->codegen();
if (!EndCond)
return nullptr;
// Convert condition to a bool by comparing non-equal to 0.0.
EndCond = Builder->CreateFCmpONE(
EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
// Create the "after loop" block and insert it.
BasicBlock *LoopEndBB = Builder->GetInsertBlock();
BasicBlock *AfterBB =
BasicBlock::Create(*TheContext, "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
Builder->SetInsertPoint(AfterBB);
// Add a new entry to the PHI node for the backedge.
Variable->addIncoming(NextVar, LoopEndBB);
// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;
else
NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(*TheContext));
}
Function *PrototypeAST::codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
FunctionType *FT =
FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
// Set names for all arguments.
unsigned Idx = 0;
for (auto &Arg : F->args())
Arg.setName(Args[Idx++]);
return F;
}
Function *FunctionAST::codegen() {
// Transfer ownership of the prototype to the FunctionProtos map, but keep a
// reference to it for use below.
auto &P = *Proto;
FunctionProtos[Proto->getName()] = std::move(Proto);
Function *TheFunction = getFunction(P.getName());
if (!TheFunction)
return nullptr;
// If this is an operator, install it.
if (P.isBinaryOp())
BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
Builder->SetInsertPoint(BB);
// Record the function arguments in the NamedValues map.
NamedValues.clear();
for (auto &Arg : TheFunction->args())
NamedValues[std::string(Arg.getName())] = &Arg;
if (Value *RetVal = Body->codegen()) {
// Finish off the function.
Builder->CreateRet(RetVal);
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
// Run the optimizer on the function.
TheFPM->run(*TheFunction, *TheFAM);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
if (P.isBinaryOp())
BinopPrecedence.erase(P.getOperatorName());
return nullptr;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static void InitializeModuleAndManagers() {
// Open a new context and module.
TheContext = std::make_unique<LLVMContext>();
TheModule = std::make_unique<Module>("KaleidoscopeJIT", *TheContext);
TheModule->setDataLayout(TheJIT->getDataLayout());
// Create a new builder for the module.
Builder = std::make_unique<IRBuilder<>>(*TheContext);
// Create new pass and analysis managers.
TheFPM = std::make_unique<FunctionPassManager>();
TheLAM = std::make_unique<LoopAnalysisManager>();
TheFAM = std::make_unique<FunctionAnalysisManager>();
TheCGAM = std::make_unique<CGSCCAnalysisManager>();
TheMAM = std::make_unique<ModuleAnalysisManager>();
ThePIC = std::make_unique<PassInstrumentationCallbacks>();
TheSI = std::make_unique<StandardInstrumentations>(*TheContext,
/*DebugLogging*/ true);
TheSI->registerCallbacks(*ThePIC, TheMAM.get());
// Add transform passes.
// Do simple "peephole" optimizations and bit-twiddling optzns.
TheFPM->addPass(InstCombinePass());
// Reassociate expressions.
TheFPM->addPass(ReassociatePass());
// Eliminate Common SubExpressions.
TheFPM->addPass(GVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
TheFPM->addPass(SimplifyCFGPass());
// Register analysis passes used in these transform passes.
PassBuilder PB;
PB.registerModuleAnalyses(*TheMAM);
PB.registerFunctionAnalyses(*TheFAM);
PB.crossRegisterProxies(*TheLAM, *TheFAM, *TheCGAM, *TheMAM);
}
static void HandleDefinition() {
if (auto FnAST = ParseDefinition()) {
if (auto *FnIR = FnAST->codegen()) {
fprintf(stderr, "Read function definition:");
FnIR->print(errs());
fprintf(stderr, "\n");
ExitOnErr(TheJIT->addModule(
ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
InitializeModuleAndManagers();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern() {
if (auto ProtoAST = ParseExtern()) {
if (auto *FnIR = ProtoAST->codegen()) {
fprintf(stderr, "Read extern: ");
FnIR->print(errs());
fprintf(stderr, "\n");
FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (auto FnAST = ParseTopLevelExpr()) {
if (FnAST->codegen()) {
// Create a ResourceTracker to track JIT'd memory allocated to our
// anonymous expression -- that way we can free it after executing.
auto RT = TheJIT->getMainJITDylib().createResourceTracker();
auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
InitializeModuleAndManagers();
// Search the JIT for the __anon_expr symbol.
auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));
// Get the symbol's address and cast it to the right type (takes no
// arguments, returns a double) so we can call it as a native function.
double (*FP)() = ExprSymbol.toPtr<double (*)()>();
fprintf(stderr, "Evaluated to %f\n", FP());
// Delete the anonymous expression module from the JIT.
ExitOnErr(RT->remove());
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (true) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;
case ';': // ignore top-level semicolons.
getNextToken();
break;
case tok_def:
HandleDefinition();
break;
case tok_extern:
HandleExtern();
break;
default:
HandleTopLevelExpression();
break;
}
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
#ifdef _WIN32
#define DLLEXPORT __declspec(dllexport)
#else
#define DLLEXPORT
#endif
/// putchard - putchar that takes a double and returns 0.
extern "C" DLLEXPORT double putchard(double X) {
fputc((char)X, stderr);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" DLLEXPORT double printd(double X) {
fprintf(stderr, "%f\n", X);
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();
TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
InitializeModuleAndManagers();
// Run the main "interpreter loop" now.
MainLoop();
return 0;
}